Research Article

Korean Journal of Plant Resources. 31 December 2019. 644-668
https://doi.org/10.7732/kjpr.2019.32.6.644

ABSTRACT


MAIN

  • Introduction

  • Materials and Methods

  •   Taxon Sampling, Genome Sequencing, Chloroplast Genome Assembly and Annotation

  •   Drawing circular map of chloroplast genome

  •   Comparative analysis of chloroplast genomes

  •   Simple sequence repeat (SSR) analysis

  •   Nucleotide diversity analysis

  •   Phylogenetic analysis

  • Results and Discussion

  •   Chloroplast genome features

  •   Simple sequence repeats analyses of Dysphania chloroplast genomes

  •   Nucleotide diversity analysis within three Dysphania species

  •   Comparative analysis of IR junction structure

  •   Phylogenetic analyses with complete chloroplast genomes

  • Conclusion

Introduction

Genus Dysphania R. Br. (Chenopodiaceae/Amaranthaceae sensu in APG system) contained only ten species originated from Australia (Wilson et al., 1983), but now this genus is composed of 48 taxa by including species from other genera (Mosyakin and Clemants, 2002; Mosyakin and Clemants, 2008; Perth, 2011; Verloove and Lambinon, 2006) as well as newly reported species in Chenopodiaceae (Dillon and Markey, 2016; Sukhorukov, 2012; Sukhorukov et al., 2015). This genus is characterized by presence of multicellular glandular hair in Flora of China (Zhu et al., 2003). The phylogenetic position of genus Dysphania have been confirmed and maintained as a robust monophyletic clade supported by many phylogenetic studies (Fuentes-Bazan et al., 2012a; Fuentes-Bazan et al., 2012b; Kadereit et al., 2003; Kadereit et al., 2010). Thanks to rapid development of next generation sequencing (NGS) technologies (Mardis, 2008; Metzker, 2010), several complete chloroplast genomes of Dysphania species have been sequenced to understand their genetic information as a candidate of cancer treatment (Chen and Yang, 2018), an invasive species (Kim et al., 2019), and investigation of intraspecies variation (Park and Kim, 2019).

Dysphania ambrosioides (L.) Mosyakin & Clemants (= Chenopodium ambrosioides L.) is South American ethnobotanical species utilized as a medicinal and culinary plant named as i) ‘epazote’ by Aztecs and Mayans in Mesoamerica, ii) ‘paico’ in Andean region, and many others names of South America (Albuquerque et al., 2018). It is native to Central and Southern America and is now distributed throughout most of the world including North America (Stohlgren et al., 2013), Europe (Balogh et al., 2003; Goia et al., 2014; Maslo, 2016; Pace and Tammaro, 2001; Weber and Gut, 2004), Asia (Aravindhan and Rajendran, 2014; Dogra et al., 2009; Liu et al., 2006; Mito and Uesugi, 2004; Rastogi et al., 2015; Sekar, 2012; Xu et al., 2012), and Africa (Brown et al., 1985; Foxcroft et al., 2008; Hegazy et al., 2008; Verloove, 2013). D. ambrosioides was introduced and naturalized in South Korea (Han et al., 2018; Lee et al., 2011). Until now, there is no report of agricultural and ecological damages where D. amrosioides has been found, but it is possible to affect harmful effects to local ecosystems; e.g., volatile oil of D. ambrosioides inhibits germination and seeding growth of rape (Brassica campestris L.), lettuce (Lactuca sativa L.), and wheat (Triticum aestivum L.) due to its allelopathic effect (Wang et al., 2009).

Despite its negative effects, useful effects of D. ambrosioides have been reported and confirmed; for example, anti-inflammatory (Ibironke and Ajiboye, 2007; Reyes-Becerril et al., 2019), antioxidant (Bezerra et al., 2019; Kumar et al., 2007), anti-tumoral action and immunostimulatory (Rossi-Bergamann et al., 1997), antifungal (Chekem et al., 2010; Jardim et al., 2008; Kumar et al., 2007; Prasad et al., 2010), antimicrobial (Bezerra et al., 2019; Brahim et al., 2015; Kiuchi et al., 2002; Monzote et al., 2006; Monzote et al., 2014), insecticidal (Pandey et al., 2014; Pavela et al., 2018; Wei et al., 2015), and even corrosion inhibition of steel (Bammou et al., 2014). These positive effects led us to decipher its chloroplast genome to understand genetic background and phylogenetic position under genus Dysphania. It was also analyzed to understand phylogenomic position and to compare the characteristics of inter- and intra-species among Dysphania species.

Materials and Methods

Taxon Sampling, Genome Sequencing, Chloroplast Genome Assembly and Annotation

Fresh Dysphania ambrosioides leaves from a single individual were collected from Korea (voucher specimen: IB-01027, Y. Kim, in InfoBoss Cyber Herbarium (IN)). Total DNA was isolated using the DNeasy Plant Mini Kit (Qiagen, Carlsbad, CA, USA) and sequenced using the Illumina HiSeqX (Illumina, Inc., San Diego, CA, USA) at Macrogen Corporation (Seoul, Korea). Raw sequences were filtered by Trimmomatic 0.33 (Bolger et al., 2014). The resulting paired-end reads were assembled de novo using Velvet 1.2.10 (Zerbino and Birney, 2008) with multiple k-mers ranging from 51 to 81 to select the best assembly result. Gap filling process was conducted with SOAPGapCloser 1.12 (Zhao et al., 2011). Assembled sequences were confirmed using BWA 0.7.17 (Li, 2013) and SAMtools 1.9 (Li et al., 2009) to correct misassembled bases. The tRNAs were confirmed using tRNAscan-SE (Lowe and Eddy, 1997). Annotation was conducted using Geneious R11 11.0.5 (Biomatters Ltd., Auckland, New Zealand) with Dysphania pumilio chloroplast genome (NC_041159; Kim et al., 2019), and the annotated chloroplast genome sequences were submitted to GenBank (accession number is NC_041201).

Drawing circular map of chloroplast genome

The annotated GenBank format sequence file was used to draw the circular map using OGDRAW 1.2 (Lohse et al., 2007) with default options.

Comparative analysis of chloroplast genomes

The complete chloroplast of D. ambrosioides was compared to those of the other available Dysphania species including two D. pumilio and one D. botrys by aligning these sequences with MAFFT 7.388 (Katoh and Standley, 2013). Based on these alignment, nucleotide diversity was calcualted by inhouse pipeline implemented in the PCD (http://www.cp-genome.net; Park et al., in preparation). Calculation was done with parameters: 500-bp windows and 20-bp steps.

Simple sequence repeat (SSR) analysis

Simple sequence repeats (SSRs) were identified on the chloroplast genome sequence using the pipeline of the SSR database (SSRDB; http://ssr.pe.kr/; Park et al., in preparation). Based on conventional definition of SSR on chloroplast genome: MonoSSR (1 bp) to HexaSSR (6 bp) and total length of SSRs on chloroplast genome is above 10 bp. However, practically, many researches used on additional condition: number of minimum repeats of MonoSSR is 8 not 10 (Chen et al., 2015), and minimum repeats of PentaSSR and HexaSSR are 3 (Jeon and Kim, 2019; Li et al., 2019; Shukla et al., 2018) or 4 (Cheng et al., 2016; Kim et al., 2019) instead of 2. It may be caused by the reason that once there is sequence variation in SSR of which repeat is 2 and then it is no longer SSR because number of repeats of this mutated SSR is only 1. In addition, one research used one condition that number of repeats of MonoSSR can be 9 when there is corresponding SSR of which number of repeats is 10 in other species (Jeon and Kim, 2019).

So, we made the rule to identify SSRs on chloroplast genomes like this: MonoSSR is defined that unit sequence length is 1 bp and number of repeats is at least 10, DiSSR is defined that unit sequence length is 2 bp and number of repeats is at least 5, TriSSR is defined that unit sequence length is 3 bp and number of repeats is at least 4, and TetraSSR is defined that unit sequence length is 4 bp and number of repeats is at least 3 to keep minimum length of chloroplast SSR (10 bp). For PentaSSR and HexaSSR, one additional group was defined named as potential SSRs: PentaSSRs and HexaSSRs of which number of repeats is 2. In addition, we extended range of SSRs of which motif length is 7 bp to 10 bp with minimum two repeats named as HeptaSSR, OctaSSR, NonaSSR, and DecaSSR.

After identifying SSRs on chloroplast genomes, their coordinates were compared with gene position to classify where they are originated from under the SSRDB (http://ssr.pe.kr/).

Nucleotide diversity analysis

Nucleotide diversity was calculated based on the method proposed by Nei and Li (1979) based on multiple sequence alignment of three Dysphania chloroplast genome sequences using perl script. Window size is 500 bp and step size is 200 bp for sliding-window method. Genomic coordination of each window was compared with gene annotation of chloroplast genome for further analyses.

Phylogenetic analysis

For the phylogenetic analysis, complete chloroplast genomes of 26 representative species from the Chenopodiaceae/Amaranthaceae sensu in APG system and seven species as outgroup species were aligned using MAFFT 7.388 (Katoh and Standley, 2013). All chloroplast genome sequences were retrieved from the PCD (http://www.cp-genome.net; Park et al., in preparation). The maximum likelihood (ML) phylogeny tree was constructed by IQ-TREE 1.6.6 (Nguyen et al., 2014) under the GTR+F+R3 model (1,000 replicates) and phylogenetic tree was modified using FigTree 1.4.4 (http://tree. bio.ed.ac.uk/software/figtree/).

Results and Discussion

Chloroplast genome features

Chloroplast genome of Dysphaniaambrosioides (GenBank accession is NC_041201) is 151,689 bp long and has four subregions: 83,421 bp of large single copy (LSC) and 18,062 bp of small single copy (SSC) regions are separated by 25,103 bp of inverted repeat (IR). GC ratio of this chloroplast genome is 36.9% and those of LSC, SSC, and IR are 34.9%, 30.3%, and 42.7%, respectively. It contains 128 genes (84 protein-coding genes, eight rRNAs, and 36 tRNAs); 15 genes including seven tRNA genes (trnN-GUU, trnR-ACG, trnA-UGC, trnI-GAU, trnV-GAC, trnL-CAA, and trnI-CAU), four rRNA genes (rRNA5, rRNA4.5, rRNA23, and rRNA16), and four protein-coding genes (rps7, ndhB, ycf2, and rpl2) are duplicated in IR regions. Twelve genes (ndhA, ndhB, petB, petD, rpl16, rpoC1, rps16, atpF, trnI-GAU, trnA-UGC, trnK-UUU, and trnL-UAA) contain one intron, while clpP, rps12, and ycf3 have two introns. In addition, the complete ycf1 gene is located in the IR region at the SSC/IR junction (Fig. 1). The number of genes and gene order are identical in the chloroplast genomes of three Dysphania species except GC ratio (Table 1). The GC ratio among those species is slightly diffident in LSC (34.7% to 34.9%) and SSC (30.1% to 30.4%), while that of IR is same to each other (Table 1).

http://static.apub.kr/journalsite/sites/kjpr/2019-032-06/N0820320602/images/kjpr_32_06_02_F1.jpg
Fig. 1.

Gene map of Dysphania ambrosioides chloroplast genome. The genes located outside of the circle are transcribed clockwise, while those located inside are transcribed counterclockwise. The dark gray plot in the inner circle corresponds to GC content. Large single copy, small single copy, and inverted repeat are indicated with LSC, SSC, and IR (IRa and IRb), respectively.

Table 1. The general characteristics of three Dysphania chloroplast genomes

Characteristics D. ambrosioidesD. pumilioD. botrys
Accession Number NC_041201 NC_041159 NC_042166
References This study (Kim et al., 2019) (Chen and Yang, 2018)
Total cpDNA size (bp) / GC content (%) 151,689 / 36.9 151,962 / 36.9 152,055 / 36.8
LSC size (bp) / GC content (%) 83,241 / 34.9 83,756 / 34.8 83,769 / 34.7
IR size (bp) / GC content (%) 25,103 / 42.7 25,231 / 42.7 25,185 / 42.7
SSC size (bp) / GC content (%) 18,062 / 30.3 17,742 / 30.4 17,916 / 30.1
Number of genes 128 128 128
Number of protein-coding genes 84 84 83
Number of tRNA genes 36 36 37
Number of rRNA genes 8 8 8
Number of duplicated genes 17 17 17

Simple sequence repeats analyses of Dysphania chloroplast genomes

In total, 512 simple sequence repeats (SSRs; Table 2 and Appendix 1) including potential (411; 80.47%) and extended SSRs (33; 6.45%) are identified from D. ambrosioides chloroplast genome. 50, 6, and 11 SSRs are identified in LSC, IR, and SSC regions, respectively (Fig. 2), which is larger than those of Chenopodium album and C. quinoa (Hong et al., 2017), and similar to those of Rosamultiflora, R. maximowicziana, and R. luciae chloroplast genomes (Jeon and Kim, 2019). 240, 130, and 42 potential SSRs are also found in LSC, IR, and SSC regions, respectively (Fig. 2), presenting higher density in IR region than that of SSRs. 18, 10, and 5 extended SSRs are in LSC, IR, and SSC regions, showing number of extended SSRs in one IR region is same to that of SSC (Fig. 2). Considering two Dysphania chloroplast genomes, total number of SSRs are quite different: D. pumilio contains 76 SSRs and D. botrys has 45 SSRs. In addition, Chenopodium quinoa and C. album displayed 44 and 53 SSRs, respectively (Hong et al., 2017), reflecting various number of SSRs in both neighbor genera. However, total number of SSRs, potential SSRs, and extended SSRs are similar to each other: D. ambrosioides contains 512, D. pumilio has 509, and D. botrys covers 508 (Fig 2). Based on coordination of SSRs, potential SSRs, and extended SSRs of three Dysphania species, there are many species-specific areas where SSRs in one species not showing corresponding SSRs in the other two species are located, indicating that similarity of total numbers of SSRs, potential SSRs and extended SSRs of three Dysphania species is coincidence.

Table 2. List of simple sequence repeats including two types identified from Dysphania ambrosioides

Name Type SSR Type Start End Unit sequence Repeat number Gene
c70000001 ExtendedSSR HeptaSSR 1825 1838 CCAAATA 2 matK
c70000002 ExtendedSSR HeptaSSR 3600 3613 CTCTTAA 2
c70000003 ExtendedSSR HeptaSSR 5216 5229 ACAATTA 2
cM0000001 SSR MonoSSR 6699 6708 A 10
cM0000002 SSR MonoSSR 7362 7371 A 10
cM0000003 SSR MonoSSR 7626 7637 A 12
cT0000001 SSR TriSSR 7626 7637 AAA 4
cD0000001 SSR DiSSR 7977 7986 AT 5
cM0000004 SSR MonoSSR 8860 8869 T 10
cM0000005 SSR MonoSSR 9509 9518 T 10
cTe0000001 SSR TetraSSR 12734 12745 GGAA 3
cD0000002 SSR DiSSR 13175 13184 CA 5
c80000001 ExtendedSSR OctaSSR 13777 13792 TATTTATA 2
cTe0000002 SSR TetraSSR 15718 15729 ATTT 3
c90000002 ExtendedSSR NonaSSR 15759 15776 AAAAGATAA 2
cM0000006 SSR MonoSSR 17785 17795 T 11 rpoC2
cM0000007 SSR MonoSSR 21963 21972 A 10
cM0000008 SSR MonoSSR 22174 22183 A 10
cM0000009 SSR MonoSSR 25437 25446 T 10 rpoB
c80000002 ExtendedSSR OctaSSR 26216 26231 ATATATGA 2
cM0000010 SSR MonoSSR 28517 28526 A 10
cM0000011 SSR MonoSSR 30306 30315 A 10
cTe0000003 SSR TetraSSR 31338 31349 TCTT 3
cM0000012 SSR MonoSSR 34378 34387 T 10
c80000003 ExtendedSSR OctaSSR 35168 35183 CAATATAA 2
c70000007 ExtendedSSR HeptaSSR 41592 41605 TAACAAA 2
cM0000013 SSR MonoSSR 42109 42118 A 10
c70000008 ExtendedSSR HeptaSSR 44091 44104 TTAGTTA 2
cD0000003 SSR DiSSR 45286 45297 TA 6
c70000009 ExtendedSSR HeptaSSR 45333 45346 TAAATGA 2
cD0000004 SSR DiSSR 45636 45649 AT 7
cM0000014 SSR MonoSSR 48064 48077 T 14
cT0000002 SSR TriSSR 48064 48075 TTT 4
cM0000015 SSR MonoSSR 50198 50210 A 13
cT0000003 SSR TriSSR 50198 50209 AAA 4
c70000011 ExtendedSSR HeptaSSR 50233 50246 TTTGTTA 2
cM0000016 SSR MonoSSR 50602 50613 T 12
cT0000004 SSR TriSSR 50602 50613 TTT 4
cM0000017 SSR MonoSSR 50825 50835 T 11
cM0000018 SSR MonoSSR 53712 53721 T 10 atpB
cM0000019 SSR MonoSSR 53827 53836 A 10
cM0000020 SSR MonoSSR 54092 54101 T 10
c70000012 ExtendedSSR HeptaSSR 56336 56349 TCTTATA 2
c80000004 ExtendedSSR OctaSSR 56405 56420 TTTCTTTT 2
c70000013 ExtendedSSR HeptaSSR 58357 58370 AATTCGT 2
cM0000021 SSR MonoSSR 58435 58444 T 10
cTe0000004 SSR TetraSSR 58516 58531 TAAT 4
c80000006 ExtendedSSR OctaSSR 58677 58692 TTCTTTAT 2 psaI
cM0000022 SSR MonoSSR 60250 60259 A 10 cemA
cTe0000005 SSR TetraSSR 60938 60949 TGAA 3 cemA
cM0000023 SSR MonoSSR 64357 64367 A 11
cD0000005 SSR DiSSR 64561 64572 AT 6
cM0000024 SSR MonoSSR 64745 64755 T 11
cM0000025 SSR MonoSSR 65181 65191 T 11
cP0000001 SSR PentaSSR 65399 65413 TTTAT 3
cM0000026 SSR MonoSSR 66109 66118 T 10
cM0000027 SSR MonoSSR 67593 67602 T 10
cM0000028 SSR MonoSSR 68229 68238 T 10
cM0000029 SSR MonoSSR 68241 68251 T 11
cM0000030 SSR MonoSSR 68759 68769 T 11
cM0000031 SSR MonoSSR 70683 70692 T 10
c70000015 ExtendedSSR HeptaSSR 71719 71732 CTGGTTG 2 psbB
cM0000032 SSR MonoSSR 77245 77254 T 10 rpoA
c70000016 ExtendedSSR HeptaSSR 78650 78663 TTTTAGT 2
cM0000033 SSR MonoSSR 80264 80273 A 10
c70000017 ExtendedSSR HeptaSSR 80951 80964 TAAATAT 2
cM0000034 SSR MonoSSR 81501 81510 T 10
cM0000035 SSR MonoSSR 83182 83197 T 16 rpl22
cT0000005 SSR TriSSR 83182 83196 TTT 5 rpl22
c90000004 ExtendedSSR NonaSSR 87117 87134 GGAACATTT 2 ycf2
cD0000006 SSR DiSSR 92466 92475 TA 5
cM0000036 SSR MonoSSR 97844 97853 T 10
c80000008 ExtendedSSR OctaSSR 102025 102040 TTTTGAGA 2
cTe0000006 SSR TetraSSR 104017 104028 AGGT 3 rrn23
c70000019 ExtendedSSR HeptaSSR 106379 106392 TATGTTT 2
c70000020 ExtendedSSR HeptaSSR 106658 106671 AAGAATG 2
c90000005 ExtendedSSR NonaSSR 107219 107236 GAAGAAGGA 2 ycf1
cM0000037 SSR MonoSSR 108408 108417 A 10 ycf1
c70000021 ExtendedSSR HeptaSSR 110105 110118 CGAAACT 2 ndhF
c90000006 ExtendedSSR NonaSSR 111025 111042 AAAGTCAAT 2
cM0000038 SSR MonoSSR 111305 111315 A 11
cD0000007 SSR DiSSR 111447 111456 TA 5
cD0000008 SSR DiSSR 112099 112108 TA 5
cM0000039 SSR MonoSSR 112430 112439 T 10
c100000001 ExtendedSSR DecaSSR 112770 112789 ATATATAGTT 2
cM0000040 SSR MonoSSR 112866 112876 A 11
cM0000041 SSR MonoSSR 113133 113142 T 10
c70000023 ExtendedSSR HeptaSSR 117365 117378 TAGAATA 2 ndhG
c70000024 ExtendedSSR HeptaSSR 118129 118142 ATTTCCA 2 ndhI
cM0000042 SSR MonoSSR 118476 118486 T 11
cT0000006 SSR TriSSR 120629 120640 TGT 4 ndhA
cTe0000007 SSR TetraSSR 122441 122452 TATT 3
cTe0000008 SSR TetraSSR 124069 124080 TAAT 3 ycf1
cM0000043 SSR MonoSSR 126694 126703 T 10 ycf1
c90000007 ExtendedSSR NonaSSR 127875 127892 TCCTTCTTC 2 ycf1
c70000025 ExtendedSSR HeptaSSR 128438 128451 TTCATTC 2
c70000026 ExtendedSSR HeptaSSR 128719 128732 AAACATA 2
cTe0000009 SSR TetraSSR 131081 131092 CTAC 3 rrn23
c80000009 ExtendedSSR OctaSSR 133071 133086 TCTCAAAA 2
cM0000044 SSR MonoSSR 137258 137267 A 10
cD0000009 SSR DiSSR 142635 142644 AT 5
c90000008 ExtendedSSR NonaSSR 147977 147994 AAATGTTCC 2 ycf2

http://static.apub.kr/journalsite/sites/kjpr/2019-032-06/N0820320602/images/kjpr_32_06_02_F2.jpg
Fig. 2.

Simple sequence repeat sequences of three Dysphania species along with three regions, LSC, IR, and SSC. X-axis presents three regions of chloroplast genomes, LSC, IR, and SSC along with three SSR types, SSRs, Potential SSRs, and Extended SSRs. Y-axis indicates number of SSRs. Three species were presented with different grey colors.

Along with types of SSRs (MonoSSR to HexaSSR), D. ambrosioides contains no PentaSSR and HexaSSR; while the other two Dysphania species have one PentaSSR (Fig 3). MonoSSR shows the highest number of SSRs among the six SSR types for all three Dysphania species, which is same to those of C. quinoa, C. album (Hong et al., 2017), Haloxylon ammodendron and H. persicum (Dong et al., 2016) in Chenopodiaceae and the three Rosa species in Rosaceae (Jeon and Kim, 2019; Kim et al., 2019; Li et al., 2019). However, trend of numbers of DiSSRs, TriSSRs, and TetraSSRs presents difference among three species: D. ambrosioides presents that number of DiSSRs is same to that of TetraSSRs and number of TriSSRs is the lowest, same trend to D. botrys (Fig 3). D. pumilio shows that number of DiSSRs is same to that of TetraSSRs, same to D. ambrosioides, but number of TriSSRs is higher than those of DiSSRs and TetraSSRs (Fig 3). Potential SSRs of which repeat number is 2 displays the same trend of PentaSSRs and HexaSSRs among three species and that of PentaSSRs is larger than that of HexaSSRs. Extended SSRs ranging from HeptaSSR to DecaSSR also present the same trend among three Dysphania species. Development of molecular markers for distinguishing Dysphania species as well as their populations, these differences can be utilized for better resolutions (Song et al., 2003; Wang et al., 2009; Würschum et al., 2013).

http://static.apub.kr/journalsite/sites/kjpr/2019-032-06/N0820320602/images/kjpr_32_06_02_F3.jpg
Fig. 3.

Simple sequence repeat sequences of three Dysphania species along with their unit length. X-axis presents types of SSRs of which length is from 1 bp (MonoSSR) to 10 bp (DecaSSR) classified by three SSRs displayed on the top of the graph: SSRs, Potential SSRs, and Extended SSRs. Y-axis indicates number of SSRs. Dark black, grey, and light grey bars represent SSRs of D. ambrosioides, D. pumilio, and D. botrys.

14 out of 68 SSRs are found in nine genes, rpoC2, rpoB, atpB, cemA, rpoA, rpl22, ycf1, ndhA as well as rrn23, ribosomal RNA, consisting of eight MonoSSRs, four TetraSSRs, and two TriSSRs (Table 2). 4 out of 33 extended SSRs covers four genes, ycf2, trnV-GAC, psbA, and rpoC2, which are different from eight genes containing SSRs (Table 2). Potential SSRs also covers many genes of which some are overlapped with genes containging SSRs (Appendix 1). These SSRs identified in protein-coding genes will be utilized for better population genetics studies because it may link to essential functions inside cell.

Nucleotide diversity analysis within three Dysphania species

The complete chloroplast sequences of Dysphania ambrosioides, D. botrys, and D. pumilio were aligned with MAFFT 7.388 (Katoh and Standley, 2013; Fig. 4). Overall nucleotide diversity (Pi) was 0.0068 (Fig 4). Based on nucleotide diversity across three chloroplast genome of Dysphania species, IR region presents very low nucleotide diversity and LSC and SSC regions present higher nucleotide diversity than that of IR as same as the other chloroplast genomes (Hong et al., 2017; Thomson et al., 2017; Li et al., 2018).

http://static.apub.kr/journalsite/sites/kjpr/2019-032-06/N0820320602/images/kjpr_32_06_02_F4.jpg
Fig. 4.

Nucleotide diversity of three Dysphania chloroplast genomes. X-axis presents chloroplast genomic coordination and Y-axis shows nucleotide diversity value (Pi) calculated with 500-bp windows and 200-bp step. Black arrows and gene names present nucleotide diversity peak of which value is above 0.015. Below X-axis, arrow diagrams show four regions, LSC, IRb, SSC, and IRa, respectively.

Based on nucleotide diversity distribution along with Dysphania chloroplast genomes (Fig. 4), rps16, psbL, trnS, petN, psbM, trnD, rps4, trnT, ndhC, accD, psbA, rps12, ndhF, rpl32, ccsA, ycf1, rrn5 and rrn4.5 genes present high nucleotide diversity (> 0.015), which are candidates for molecular markers of population genetics in Dysphania species. Interesting thing is that some part of ribosomal RNAs, such as rrn5 and rrn4.5, present high nucleotide diversity value, which is same trend to that of Chenopodium (Hong et al., 2017); while different from those of Rosa and Symplocarpus species (Jeon and Kim, 2019; Kim et al., 2019). Number of Dysphania genes with high nucleotide diversity are larger than those of Chenopodium (Hong et al., 2017) and Rosa species (Jeon and Kim, 2019); while similar to that of Symplocarpus species (Kim et al., 2019) indicating that this is species or genus-specific feature.

Comparative analysis of IR junction structure

IR region on chloroplast genome is one of main sources to expand or to shrink chloroplast genome sequence (Asaf et al., 2016; Dong et al., 2016; Kim et al., 2019; Li et al., 2018; Yang et al., 2016). Based on alignment of three Dysphania chloroplast genomes, 3’ end position of ndhF at the border of IR and SSC are different; D. ambrosioides present the shortest ndhF gene; while ycf1 in the end of IR is ended in the border for three chloroplast genomes (Fig. 5). It is similar to the cases of i) some bamboo species having pseudo-ndhF genes because of different IR borders (Wang et al., 2018) and ii) different size of ndhF genes located in the start part of SSC across Solanaceae species (Chung et al., 2006). Stop codons of ycf1 genes of three Dysphania species are located in the same position, the end of IR (Fig. 5), which is different from the comparison results: some of ycf1 genes are extended to SSC region (Chung et al., 2006; Hong et al., 2017; Xie et al., 2018). There is no difference among three Dysphania chloroplast genomes in two junctions between SSC and IRa and IRa and LSC (Fig. 5); while lengths of SSC of three Dysphania present that the longest is D.ambrosioides, the second is D. botrys, and the shortest is D. pumilio. This indicates that common ancestor of D. pumilio and D. botrys may have shorter SSC than that of D. ambrosioides based on phylogenetic relationship (Fig. 6).

http://static.apub.kr/journalsite/sites/kjpr/2019-032-06/N0820320602/images/kjpr_32_06_02_F5.jpg
Fig. 5.

Comparison of the border positions of IR, SSC, and LSC regions among three Dysphania species. Diagrams present three chloroplast genomes of Dysphania with each region. Black arrows show length of each region except LSC, and gray arrow diagrams show genes located in junctions between LSC and IRb, IRb and SSC, SSC and IRa, and IRa and LSC.

http://static.apub.kr/journalsite/sites/kjpr/2019-032-06/N0820320602/images/kjpr_32_06_02_F6.jpg
Fig. 6.

Maximum likelihood (bootstrap repeat is 1,000) phylogenetic trees of 26 Chenopodiaceae/Amaranthaceae sensu in APG complete chloroplast genomes. The numbers above branches indicate bootstrap support values of neighbor joining, maximum likelihood, and minimum evolution phylogenetic trees. Names on gray bars present tribes and subfamilies (light gray) and families (dark gray). Bolded species name indicates our chloroplast genome.

Phylogenetic analyses with complete chloroplast genomes

A total of 186,232 aligned nucleotide bases included 129,316 constant sites (47.6%) and 37,043 parsimony-informative sites (19.9%) were identified from multiple sequence alignments of 26 chloroplast genomes. The bootstrapped ML tree presents that genus Dysphania strongly supported monophyly as previous studies displayed (Fuentes-Bazan et al., 2012a; Fuentes-Bazan et al., 2012b; Kadereit et al., 2003; Kadereit et al., 2010) and formed sister clade with Spinacia (Fig. 6). D. ambrosioides has basal position in Dysphania clade with clustering the rest of two Dysphania species, D. pumilio and D. botrys (Fig. 6). In the level of tribe, two tribes in Chenopodioidae, Dysphanieae including genus Dysphania and Anserineae containing Spinacia oleracea have shown week or no resolution on their phylogenetic relation (Fuentes-Bazan et al., 2012b; Kadereit et al., 2003; Kadereit et al., 2010; Sukhorukov et al., 2018). Although the number of taxa is less than those in previous studies using molecular markers, complete chloroplast genome sequences provide much higher resolution of phylogenetic tree due to large amount of sequences; this unclear relationship is clearly resolved in our phylogenetic tree (Fig. 6). In addition, recent phylogenetic trees based on complete chloroplast genome sequences also presented the same topology (Chen and Yang, 2018; Kim et al., 2019; Park and Kim, 2019), supporting phylogenetic relationship between Dysphanieae and Anserineae becomes clear.

Conclusion

We determined the complete chloroplast sequence of useful medicinal and invasive species Dysphania ambrosioides and compared this species with other chloroplast genome of two Dysphania species. Chloroplast genome of D. ambrosioides presents 151,689 bp long with four subregions: 83,421 bp of large single copy and 18,062 bp of small single copy regions separated by 25,103 bp of inverted repeat regions and its GC ratio is 36.9%, presenting conserved manner among three Dysphania chloroplast genomes. SSR analysis presents that common features as well as differences among three Dysphania chloroplast genomes can be utilized for further population genetic researches. Nucleotide diversity of Dysphania chloroplast genomes 18 genes including two ribosomal RNAs contains high nucleotide diversity peaks, which may be genus or species-specific manner. The phylogenetic position of genus Dysphania was supported as in the previous studies, and D. ambrosioides was found to be the most basal in Dysphania among three species sequenced so far. The both tribes Dysphanieae and Anserineae were demonstrated in its phylogenetic relationship as sister. Taken together, our investigations of D. ambrosioides chloroplast genomes will be used for further in-depth study of genus Dysphania.

Appendix 1. List of simple sequence repeats of potential SSR identified from Dysphania ambrosioides
Name Type SSR Type Start End Unit sequence Repeat number Gene
cH0000001 PotentialSSR PentaSSR 197 206 TAAAA 2
cP0000002 PotentialSSR HexaSSR 369 380 TTGAAA 2 psbA
cP0000003 PotentialSSR PentaSSR 1293 1302 ATTTA 2
cH0000002 PotentialSSR PentaSSR 1759 1768 CATTT 2
cH0000003 PotentialSSR HexaSSR 2628 2639 AGAAAA 2 matK
cH0000004 PotentialSSR HexaSSR 3045 3056 TTGTGC 2 matK
cP0000004 PotentialSSR HexaSSR 3303 3314 ATTTCA 2 matK
cP0000005 PotentialSSR PentaSSR 4085 4094 TATGT 2
cP0000006 PotentialSSR PentaSSR 4270 4279 CATTT 2
cP0000007 PotentialSSR PentaSSR 4280 4289 TTTTA 2
cP0000008 PotentialSSR PentaSSR 4519 4528 AAAAT 2
cP0000009 PotentialSSR PentaSSR 4576 4585 AGGAA 2
cP0000010 PotentialSSR PentaSSR 4871 4880 TAGAT 2
cP0000011 PotentialSSR PentaSSR 4946 4955 AAAGT 2
cP0000012 PotentialSSR PentaSSR 5029 5038 TTTCA 2
cP0000013 PotentialSSR PentaSSR 5106 5115 AAAAG 2
cP0000014 PotentialSSR PentaSSR 5126 5135 CATTT 2
cH0000005 PotentialSSR PentaSSR 5359 5368 AAAGA 2
cP0000015 PotentialSSR HexaSSR 5535 5546 ACCCTA 2
cP0000016 PotentialSSR PentaSSR 5551 5560 CTTCT 2
cP0000017 PotentialSSR PentaSSR 5654 5663 GAACA 2
cH0000006 PotentialSSR PentaSSR 5798 5807 AATTT 2
cP0000018 PotentialSSR HexaSSR 5968 5979 AGAAAT 2
cP0000019 PotentialSSR PentaSSR 6467 6476 TTCTA 2
cP0000020 PotentialSSR PentaSSR 6518 6527 CCAAA 2
cH0000007 PotentialSSR PentaSSR 7202 7211 TAATA 2
cP0000021 PotentialSSR HexaSSR 7243 7254 TTTCTT 2
cH0000008 PotentialSSR PentaSSR 7306 7315 TCAAA 2
cP0000022 PotentialSSR HexaSSR 7674 7685 AAATAG 2
cP0000025 PotentialSSR PentaSSR 8150 8159 AAAGA 2
cH0000009 PotentialSSR PentaSSR 8226 8235 CAGGC 2
cH0000010 PotentialSSR HexaSSR 8286 8297 TGATAA 2
cP0000026 PotentialSSR HexaSSR 8314 8325 AAAGCA 2
cP0000027 PotentialSSR PentaSSR 8344 8353 AACAT 2
cH0000011 PotentialSSR PentaSSR 8957 8966 AAACA 2
cP0000028 PotentialSSR HexaSSR 8987 8998 AAATAG 2
cP0000029 PotentialSSR PentaSSR 9068 9077 TTGAA 2
cP0000030 PotentialSSR PentaSSR 9357 9366 TCTCA 2
cH0000012 PotentialSSR PentaSSR 9388 9397 CAAAA 2
cP0000031 PotentialSSR HexaSSR 10312 10323 GCTTGT 2 atpA
cH0000013 PotentialSSR PentaSSR 11746 11755 TCTCT 2
cP0000032 PotentialSSR HexaSSR 11977 11988 CAATAA 2
cP0000033 PotentialSSR PentaSSR 12580 12589 TAAAT 2
cH0000014 PotentialSSR PentaSSR 12630 12639 ACTTA 2
cP0000034 PotentialSSR HexaSSR 12901 12912 CTTTTC 2
cP0000035 PotentialSSR PentaSSR 13448 13457 ATTCA 2
cP0000036 PotentialSSR PentaSSR 13599 13608 CTATT 2
cH0000016 PotentialSSR PentaSSR 13799 13808 AAATA 2
cH0000017 PotentialSSR HexaSSR 13852 13863 CATATA 2
cH0000018 PotentialSSR HexaSSR 14225 14236 TAAAGC 2 atpI
cP0000037 PotentialSSR HexaSSR 14722 14733 ATTTAA 2
cP0000038 PotentialSSR PentaSSR 15641 15650 TTTCT 2
cP0000039 PotentialSSR PentaSSR 15736 15745 TAAAT 2
cH0000019 PotentialSSR PentaSSR 16792 16801 CAATT 2 rpoC2
cP0000040 PotentialSSR HexaSSR 17022 17033 AATTGG 2 rpoC2
cP0000041 PotentialSSR PentaSSR 17242 17251 TGATC 2 rpoC2
cP0000042 PotentialSSR PentaSSR 17607 17616 CAAAA 2 rpoC2
cH0000020 PotentialSSR PentaSSR 17727 17736 TATCT 2 rpoC2
cH0000021 PotentialSSR HexaSSR 18408 18419 TTGATC 2 rpoC2
cP0000043 PotentialSSR HexaSSR 18780 18791 ACGTGT 2 rpoC2
cH0000022 PotentialSSR PentaSSR 18992 19001 CATAA 2 rpoC2
cP0000044 PotentialSSR HexaSSR 21474 21485 CAAATC 2 rpoC2
cP0000045 PotentialSSR PentaSSR 21588 21597 GGATT 2 rpoC2
cH0000023 PotentialSSR PentaSSR 21794 21803 CCAAA 2
cP0000046 PotentialSSR HexaSSR 21877 21888 TTTTTA 2
cH0000024 PotentialSSR PentaSSR 21892 21901 AATTA 2
cH0000025 PotentialSSR HexaSSR 22061 22072 TAAAGC 2
cP0000048 PotentialSSR PentaSSR 26314 26323 AAAGG 2
cP0000049 PotentialSSR PentaSSR 26488 26497 TATTG 2
cH0000026 PotentialSSR PentaSSR 26522 26531 TTAAA 2
cH0000027 PotentialSSR HexaSSR 26645 26656 AATTGA 2
cP0000050 PotentialSSR HexaSSR 26657 26668 GAAAAA 2
cP0000051 PotentialSSR PentaSSR 26796 26805 AGTCA 2
cP0000052 PotentialSSR PentaSSR 26888 26897 CAAAA 2
cH0000028 PotentialSSR PentaSSR 27019 27028 GTCTA 2
cP0000053 PotentialSSR HexaSSR 27666 27677 AAAAAG 2
cH0000029 PotentialSSR PentaSSR 27740 27749 AATTT 2
cP0000055 PotentialSSR PentaSSR 28151 28160 TCAAT 2
cP0000056 PotentialSSR PentaSSR 28161 28170 TACTT 2
cP0000057 PotentialSSR PentaSSR 28531 28540 AATCG 2
cP0000058 PotentialSSR PentaSSR 28541 28550 ATAGT 2
cP0000059 PotentialSSR PentaSSR 28583 28592 ATACT 2
cP0000060 PotentialSSR PentaSSR 28929 28938 TATCA 2
cP0000061 PotentialSSR PentaSSR 29169 29178 AAAAG 2
cP0000062 PotentialSSR PentaSSR 29565 29574 ATTTT 2
cP0000063 PotentialSSR PentaSSR 29934 29943 TACCC 2 trnE-UUC
cP0000065 PotentialSSR PentaSSR 30745 30754 ATTAT 2
cP0000066 PotentialSSR PentaSSR 30758 30767 GATAA 2
cP0000067 PotentialSSR PentaSSR 30823 30832 TGGAA 2
cP0000068 PotentialSSR PentaSSR 30983 30992 CAATT 2
cP0000069 PotentialSSR PentaSSR 31094 31103 TTTCT 2
cP0000070 PotentialSSR PentaSSR 31251 31260 TTTCA 2
cP0000071 PotentialSSR PentaSSR 31512 31521 TTAAT 2
cP0000072 PotentialSSR PentaSSR 31663 31672 AAATC 2
cP0000073 PotentialSSR PentaSSR 31841 31850 CGTTT 2 psbD
cH0000030 PotentialSSR PentaSSR 32471 32480 AACCC 2 psbD
cP0000074 PotentialSSR HexaSSR 32828 32839 AACTTT 2 psbC
cH0000031 PotentialSSR PentaSSR 33564 33573 GTCTG 2 psbC
cP0000075 PotentialSSR HexaSSR 33700 33711 CTCAAG 2 psbC
cH0000032 PotentialSSR PentaSSR 33993 34002 GGTGG 2 psbC
cP0000076 PotentialSSR HexaSSR 34118 34129 TGCAGC 2 psbC
cP0000077 PotentialSSR PentaSSR 34316 34325 TAATT 2
cH0000033 PotentialSSR PentaSSR 34411 34420 AATAA 2
cP0000078 PotentialSSR HexaSSR 34560 34571 TTATTC 2
cP0000079 PotentialSSR PentaSSR 34664 34673 TATAT 2
cP0000080 PotentialSSR PentaSSR 35043 35052 TGGAT 2 psbZ
cP0000081 PotentialSSR PentaSSR 35210 35219 AAACA 2
cP0000082 PotentialSSR PentaSSR 35272 35281 TGAAT 2
cP0000083 PotentialSSR PentaSSR 35369 35378 TATAT 2
cP0000084 PotentialSSR PentaSSR 35554 35563 TAGTG 2
cP0000085 PotentialSSR PentaSSR 35579 35588 TTCTT 2
cP0000086 PotentialSSR PentaSSR 36138 36147 TACTT 2 rps14
cP0000087 PotentialSSR PentaSSR 36560 36569 CCACG 2 psaB
cP0000088 PotentialSSR PentaSSR 36709 36718 CCATC 2 psaB
cP0000089 PotentialSSR PentaSSR 37988 37997 TGTCC 2 psaB
cH0000034 PotentialSSR PentaSSR 38494 38503 ACCAA 2 psaB
cP0000090 PotentialSSR HexaSSR 38920 38931 TAATAG 2 psaA
cH0000035 PotentialSSR PentaSSR 39267 39276 AATGG 2 psaA
cP0000091 PotentialSSR HexaSSR 39412 39423 GTTGTA 2 psaA
cP0000092 PotentialSSR PentaSSR 39669 39678 ATGTG 2 psaA
cP0000093 PotentialSSR PentaSSR 40960 40969 TATTT 2
cH0000036 PotentialSSR PentaSSR 41561 41570 TTTTA 2
cH0000037 PotentialSSR HexaSSR 42163 42174 CTTAGT 2
cP0000094 PotentialSSR HexaSSR 42219 42230 TTATAT 2
cH0000038 PotentialSSR PentaSSR 42249 42258 TTCTT 2
cP0000095 PotentialSSR HexaSSR 42332 42343 CATAGA 2
cP0000096 PotentialSSR PentaSSR 43252 43261 ATTAC 2
cP0000097 PotentialSSR PentaSSR 43535 43544 AAATC 2
cP0000098 PotentialSSR PentaSSR 43911 43920 CAAAT 2
cP0000099 PotentialSSR PentaSSR 43978 43987 GATCA 2
cP0000100 PotentialSSR PentaSSR 44511 44520 GGGAT 2
cP0000101 PotentialSSR PentaSSR 44628 44637 TATTT 2
cP0000102 PotentialSSR PentaSSR 45440 45449 TATAT 2
cP0000103 PotentialSSR PentaSSR 45782 45791 TTTAG 2
cP0000104 PotentialSSR PentaSSR 46084 46093 TAATA 2
cP0000105 PotentialSSR PentaSSR 46375 46384 CAAAT 2
cP0000106 PotentialSSR PentaSSR 47143 47152 TTTTC 2
cP0000107 PotentialSSR PentaSSR 47269 47278 TTATT 2
cH0000039 PotentialSSR PentaSSR 47407 47416 AAATG 2
cP0000108 PotentialSSR HexaSSR 47652 47663 TAAAAT 2
cH0000041 PotentialSSR HexaSSR 48538 48549 CATATA 2 ndhJ
cH0000042 PotentialSSR HexaSSR 48698 48709 TTTGTA 2
cP0000109 PotentialSSR HexaSSR 48875 48886 ATTTAT 2 ndhK
cP0000110 PotentialSSR PentaSSR 49572 49581 TAAAC 2 ndhC
cH0000044 PotentialSSR PentaSSR 50095 50104 TTCCA 2
cP0000111 PotentialSSR HexaSSR 50143 50154 TATACA 2
cP0000112 PotentialSSR PentaSSR 50374 50383 AAAGA 2
cH0000045 PotentialSSR PentaSSR 50405 50414 AGGTA 2
cH0000046 PotentialSSR HexaSSR 50472 50483 TTCAAA 2
cP0000113 PotentialSSR HexaSSR 50525 50536 AGTTAA 2
cP0000114 PotentialSSR PentaSSR 50649 50658 AAATA 2
cH0000047 PotentialSSR PentaSSR 51023 51032 AAATG 2
cP0000115 PotentialSSR HexaSSR 51227 51238 GAACTA 2
cH0000048 PotentialSSR PentaSSR 51259 51268 TTGTT 2
cH0000049 PotentialSSR HexaSSR 51738 51749 TTATTT 2
cH0000050 PotentialSSR HexaSSR 51766 51777 AAAATA 2
cH0000051 PotentialSSR HexaSSR 53800 53811 GAAAAT 2
cH0000052 PotentialSSR HexaSSR 53938 53949 TTCTAT 2
cP0000116 PotentialSSR HexaSSR 54216 54227 ATATAC 2
cH0000053 PotentialSSR PentaSSR 54321 54330 GGTTG 2
cP0000117 PotentialSSR HexaSSR 56300 56311 CCTTTC 2
cP0000118 PotentialSSR PentaSSR 56316 56325 TAGAA 2
cP0000119 PotentialSSR PentaSSR 56687 56696 TTTTC 2
cP0000120 PotentialSSR PentaSSR 57949 57958 GGGTG 2 accD
cH0000054 PotentialSSR PentaSSR 58414 58423 TATAT 2
cP0000121 PotentialSSR HexaSSR 58503 58514 AGAATT 2
cH0000056 PotentialSSR HexaSSR 58570 58581 TACAAT 2
cP0000122 PotentialSSR HexaSSR 58905 58916 TTAGAT 2
cP0000123 PotentialSSR PentaSSR 59030 59039 TTCAA 2
cP0000124 PotentialSSR PentaSSR 59340 59349 TCGAT 2 ycf4
cP0000125 PotentialSSR PentaSSR 59445 59454 TAGAA 2 ycf4
cP0000126 PotentialSSR PentaSSR 59656 59665 GAAAA 2
cP0000127 PotentialSSR PentaSSR 59779 59788 AAATA 2
cP0000128 PotentialSSR PentaSSR 59877 59886 TATAT 2
cH0000057 PotentialSSR PentaSSR 59998 60007 AATTA 2
cP0000129 PotentialSSR HexaSSR 60982 60993 TTTGAA 2
cP0000130 PotentialSSR PentaSSR 61025 61034 ACAAA 2
cP0000131 PotentialSSR PentaSSR 61588 61597 AAAGA 2 petA
cH0000058 PotentialSSR PentaSSR 61859 61868 GAAAA 2 petA
cH0000059 PotentialSSR HexaSSR 62195 62206 TAACAA 2
cH0000060 PotentialSSR HexaSSR 62353 62364 TTGGAT 2
cP0000132 PotentialSSR HexaSSR 62578 62589 ATTTTT 2
cP0000133 PotentialSSR PentaSSR 62771 62780 TTAAC 2
cP0000134 PotentialSSR PentaSSR 63243 63252 GATAA 2
cP0000135 PotentialSSR PentaSSR 63260 63269 TCTAT 2
cH0000061 PotentialSSR PentaSSR 63367 63376 ATTCA 2 psbL
cP0000136 PotentialSSR HexaSSR 63421 63432 ATTCGG 2
cH0000062 PotentialSSR PentaSSR 63453 63462 ATTGC 2 psbF
cH0000063 PotentialSSR HexaSSR 64105 64116 CAAATA 2
cP0000137 PotentialSSR HexaSSR 64472 64483 TTTATA 2
cP0000138 PotentialSSR PentaSSR 64613 64622 TATTT 2
cP0000139 PotentialSSR PentaSSR 64924 64933 TATTT 2
cP0000140 PotentialSSR PentaSSR 65382 65391 GATTA 2
cP0000141 PotentialSSR PentaSSR 65502 65511 GAACT 2 trnW-CCA
cP0000142 PotentialSSR PentaSSR 65783 65792 TTCAA 2
cP0000143 PotentialSSR PentaSSR 65822 65831 CTTGT 2
cP0000144 PotentialSSR PentaSSR 65981 65990 TATCT 2
cP0000145 PotentialSSR PentaSSR 66016 66025 TTTGA 2
cP0000146 PotentialSSR PentaSSR 66026 66035 CTTAG 2
cP0000147 PotentialSSR PentaSSR 66354 66363 TTTTA 2
cP0000148 PotentialSSR PentaSSR 66368 66377 AAATA 2
cP0000149 PotentialSSR PentaSSR 66393 66402 AAAAG 2
cP0000150 PotentialSSR PentaSSR 67431 67440 AAATA 2 rps18
cP0000151 PotentialSSR PentaSSR 67552 67561 AATTG 2
cP0000152 PotentialSSR PentaSSR 68695 68704 TCTTA 2
cH0000064 PotentialSSR HexaSSR 68842 68853 TTTTGT 2
cP0000153 PotentialSSR PentaSSR 69499 69508 CTTTT 2
cH0000065 PotentialSSR HexaSSR 69540 69551 CAGATC 2
cP0000154 PotentialSSR PentaSSR 69763 69772 ATAAA 2
cH0000066 PotentialSSR HexaSSR 70123 70134 ACAAAT 2 clpP
cP0000155 PotentialSSR PentaSSR 70528 70537 TATCA 2
cP0000156 PotentialSSR PentaSSR 70543 70552 ATCCA 2
cP0000157 PotentialSSR PentaSSR 70701 70710 TCTTT 2
cP0000158 PotentialSSR PentaSSR 70732 70741 TATTC 2
cH0000067 PotentialSSR HexaSSR 70864 70875 ATTGGG 2
cH0000068 PotentialSSR HexaSSR 70968 70979 CTAAAA 2
cP0000159 PotentialSSR PentaSSR 71313 71322 GTTTA 2
cP0000160 PotentialSSR PentaSSR 71446 71455 ATAGA 2
cH0000069 PotentialSSR HexaSSR 71565 71576 CATAGT 2
cH0000070 PotentialSSR HexaSSR 72083 72094 GTTTTG 2 psbB
cP0000161 PotentialSSR PentaSSR 73357 73366 CTCTA 2 psbT
cP0000162 PotentialSSR PentaSSR 73420 73429 AAAAT 2 psbT
cP0000163 PotentialSSR PentaSSR 74397 74406 CCTAT 2
cP0000164 PotentialSSR PentaSSR 74577 74586 TAATT 2
cP0000165 PotentialSSR PentaSSR 74730 74739 AAAAT 2
cP0000166 PotentialSSR PentaSSR 75511 75520 ATAGA 2 petB
cP0000167 PotentialSSR PentaSSR 75654 75663 TAACA 2
cP0000168 PotentialSSR PentaSSR 75852 75861 TCTAT 2
cP0000169 PotentialSSR PentaSSR 76107 76116 ATATA 2
cP0000170 PotentialSSR PentaSSR 76430 76439 GAATC 2
cP0000171 PotentialSSR PentaSSR 77017 77026 ATTCA 2
cP0000172 PotentialSSR PentaSSR 79136 79145 TTTCA 2 infA
cH0000071 PotentialSSR HexaSSR 80236 80247 GAAAAA 2
cH0000072 PotentialSSR HexaSSR 81084 81095 AAAAAG 2
cP0000173 PotentialSSR PentaSSR 81544 81553 TTTTA 2
cP0000174 PotentialSSR PentaSSR 81556 81565 TTTTA 2
cP0000175 PotentialSSR PentaSSR 82050 82059 ACCCT 2 rps3
cP0000176 PotentialSSR PentaSSR 82287 82296 CAATT 2 rps3
cP0000177 PotentialSSR PentaSSR 82652 82661 TTTAT 2 rpl22
cP0000178 PotentialSSR PentaSSR 83245 83254 TTTTA 2
cH0000073 PotentialSSR HexaSSR 83615 83626 ATTTTC 2
cP0000179 PotentialSSR PentaSSR 84030 84039 TATGT 2 rpl2
cP0000180 PotentialSSR PentaSSR 84378 84387 TGGAT 2 rpl2
cP0000181 PotentialSSR PentaSSR 84479 84488 TTCTT 2
cP0000182 PotentialSSR PentaSSR 84500 84509 GAATA 2
cP0000183 PotentialSSR PentaSSR 84807 84816 TATGA 2
cP0000184 PotentialSSR PentaSSR 85023 85032 TGAAA 2
cP0000185 PotentialSSR PentaSSR 85162 85171 CAATT 2 ycf2
cP0000186 PotentialSSR PentaSSR 85727 85736 TATAT 2 ycf2
cP0000187 PotentialSSR PentaSSR 85741 85750 GATCC 2 ycf2
cH0000074 PotentialSSR HexaSSR 86985 86996 GAATTT 2 ycf2
cP0000188 PotentialSSR PentaSSR 87967 87976 CGATC 2 ycf2
cP0000189 PotentialSSR PentaSSR 88132 88141 TTCAA 2 ycf2
cH0000077 PotentialSSR HexaSSR 89085 89096 AAGAAA 2 ycf2
cP0000190 PotentialSSR PentaSSR 89110 89119 GATTG 2 ycf2
cP0000191 PotentialSSR PentaSSR 90097 90106 GAAAA 2 ycf2
cH0000078 PotentialSSR HexaSSR 90602 90613 TAGAAG 2 ycf2
cP0000192 PotentialSSR PentaSSR 91436 91445 ATGAA 2 ycf2
cP0000193 PotentialSSR PentaSSR 91842 91851 AAATA 2
cP0000194 PotentialSSR PentaSSR 91909 91918 TTGTT 2
cH0000079 PotentialSSR HexaSSR 92140 92151 ATTCCA 2
cP0000195 PotentialSSR PentaSSR 92596 92605 ATGGA 2
cH0000080 PotentialSSR HexaSSR 92774 92785 CCCATT 2
cH0000081 PotentialSSR HexaSSR 93557 93568 GCTGAA 2 ndhB
cH0000082 PotentialSSR HexaSSR 93616 93627 AGAGTC 2 ndhB
cP0000196 PotentialSSR PentaSSR 93697 93706 TAAGT 2
cP0000197 PotentialSSR PentaSSR 93913 93922 TGATT 2
cP0000198 PotentialSSR PentaSSR 94113 94122 AAAGA 2
cH0000083 PotentialSSR HexaSSR 95180 95191 TTCTTA 2
cP0000199 PotentialSSR PentaSSR 95246 95255 AGAAA 2
cH0000084 PotentialSSR HexaSSR 96092 96103 TCCATA 2
cP0000200 PotentialSSR PentaSSR 96280 96289 CGAAT 2
cH0000085 PotentialSSR HexaSSR 96906 96917 TTCCTC 2
cH0000086 PotentialSSR HexaSSR 96918 96929 TATCCC 2
cP0000201 PotentialSSR PentaSSR 97257 97266 TATTA 2
cP0000202 PotentialSSR PentaSSR 97276 97285 ATTAG 2
cP0000203 PotentialSSR PentaSSR 97441 97450 ATACA 2
cP0000204 PotentialSSR PentaSSR 97458 97467 GCAAT 2
cP0000205 PotentialSSR PentaSSR 97492 97501 GAATG 2
cH0000088 PotentialSSR HexaSSR 97583 97594 TATTAC 2
cH0000089 PotentialSSR HexaSSR 97739 97750 AATGGA 2
cP0000206 PotentialSSR PentaSSR 98095 98104 CAAGA 2
cP0000207 PotentialSSR PentaSSR 98179 98188 AGGGA 2 trnV-GAC
cH0000090 PotentialSSR HexaSSR 98303 98314 GAATGA 2
cH0000091 PotentialSSR HexaSSR 99171 99182 GACACT 2 rrn16
cP0000208 PotentialSSR PentaSSR 100203 100212 GGGGT 2
cH0000092 PotentialSSR HexaSSR 100629 100640 ATGGAA 2
cH0000093 PotentialSSR HexaSSR 101258 101269 AAGAAT 2
cP0000209 PotentialSSR PentaSSR 101489 101498 ACAAA 2
cP0000210 PotentialSSR PentaSSR 101808 101817 TTCAA 2
cH0000094 PotentialSSR HexaSSR 103600 103611 CGCGAG 2 rrn23
cH0000095 PotentialSSR HexaSSR 103623 103634 GAAGCG 2 rrn23
cP0000211 PotentialSSR PentaSSR 105110 105119 GCGGA 2 rrn23
cH0000096 PotentialSSR HexaSSR 105521 105532 TCTATC 2
cH0000097 PotentialSSR HexaSSR 105898 105909 TTCTTA 2
cH0000098 PotentialSSR HexaSSR 106326 106337 CAAGTA 2
cP0000212 PotentialSSR PentaSSR 106342 106351 TAGCA 2
cP0000213 PotentialSSR PentaSSR 106366 106375 GTCAT 2
cP0000214 PotentialSSR PentaSSR 106551 106560 CAGAA 2
cH0000099 PotentialSSR HexaSSR 107841 107852 TAGAAA 2 ycf1
cH0000100 PotentialSSR HexaSSR 107908 107919 TCCTTC 2 ycf1
cH0000101 PotentialSSR HexaSSR 107950 107961 CAAAAT 2 ycf1
cP0000215 PotentialSSR PentaSSR 107997 108006 ACAAA 2 ycf1
cP0000216 PotentialSSR PentaSSR 108222 108231 GAAAT 2 ycf1
cP0000217 PotentialSSR PentaSSR 110784 110793 TTCTA 2
cP0000218 PotentialSSR PentaSSR 111211 111220 ACTTT 2
cP0000219 PotentialSSR PentaSSR 111389 111398 TAAAT 2
cP0000220 PotentialSSR PentaSSR 111610 111619 ATAAG 2
cP0000221 PotentialSSR PentaSSR 111716 111725 TCAAT 2
cH0000102 PotentialSSR HexaSSR 111959 111970 AAGGAT 2
cH0000103 PotentialSSR HexaSSR 112079 112090 TTTTGT 2
cP0000222 PotentialSSR PentaSSR 112470 112479 AGAAA 2
cP0000223 PotentialSSR PentaSSR 112665 112674 TTTCA 2
cP0000224 PotentialSSR PentaSSR 112727 112736 AAATT 2
cP0000225 PotentialSSR PentaSSR 112747 112756 AACAA 2
cH0000104 PotentialSSR HexaSSR 112795 112806 TATGAA 2
cH0000105 PotentialSSR HexaSSR 112850 112861 GAAATG 2
cP0000226 PotentialSSR PentaSSR 113017 113026 GGCAT 2 trnL-UAG
cP0000227 PotentialSSR PentaSSR 113085 113094 AAATA 2
cP0000228 PotentialSSR PentaSSR 113385 113394 TTTCC 2 ccsA
cP0000229 PotentialSSR PentaSSR 114312 114321 AAAGG 2
cH0000107 PotentialSSR HexaSSR 114371 114382 TGAGAG 2 ndhD
cH0000108 PotentialSSR HexaSSR 115394 115405 TAATTC 2 ndhD
cP0000230 PotentialSSR PentaSSR 116256 116265 AGTAA 2
cP0000231 PotentialSSR PentaSSR 117129 117138 TGATT 2 ndhG
cP0000232 PotentialSSR PentaSSR 117422 117431 AATTG 2 ndhG
cP0000233 PotentialSSR PentaSSR 117527 117536 TAAAA 2
cP0000234 PotentialSSR PentaSSR 117636 117645 AAGTA 2
cH0000110 PotentialSSR HexaSSR 117800 117811 AAGAAA 2
cP0000235 PotentialSSR PentaSSR 117979 117988 TAATT 2 ndhI
cP0000236 PotentialSSR PentaSSR 118449 118458 AATTT 2
cH0000111 PotentialSSR HexaSSR 118627 118638 GAACAA 2 ndhA
cP0000237 PotentialSSR PentaSSR 118813 118822 ATAAA 2 ndhA
cP0000238 PotentialSSR PentaSSR 119256 119265 CTTTA 2
cP0000239 PotentialSSR PentaSSR 119415 119424 AAAAT 2
cP0000240 PotentialSSR PentaSSR 119518 119527 TAAAA 2
cH0000113 PotentialSSR HexaSSR 120036 120047 TTCTTA 2
cP0000241 PotentialSSR PentaSSR 120937 120946 TATTT 2 ndhH
cP0000242 PotentialSSR PentaSSR 122324 122333 TTTAT 2
cH0000114 PotentialSSR HexaSSR 122599 122610 AATTTT 2 ycf1
cP0000243 PotentialSSR PentaSSR 123021 123030 TTCTT 2 ycf1
cH0000115 PotentialSSR HexaSSR 123896 123907 TATAAG 2 ycf1
cH0000116 PotentialSSR HexaSSR 123949 123960 CTATAT 2 ycf1
cH0000117 PotentialSSR HexaSSR 125650 125661 TCTATT 2 ycf1
cH0000118 PotentialSSR HexaSSR 125727 125738 TTCTTT 2 ycf1
cP0000244 PotentialSSR PentaSSR 125830 125839 TCTAT 2 ycf1
cP0000245 PotentialSSR PentaSSR 126879 126888 CATTT 2 ycf1
cP0000246 PotentialSSR PentaSSR 127105 127114 TTTGT 2 ycf1
cH0000119 PotentialSSR HexaSSR 127149 127160 GATTTT 2 ycf1
cH0000120 PotentialSSR HexaSSR 127192 127203 GAAGGA 2 ycf1
cH0000121 PotentialSSR HexaSSR 127259 127270 TTTCTA 2 ycf1
cP0000247 PotentialSSR PentaSSR 128551 128560 TTCTG 2
cP0000248 PotentialSSR PentaSSR 128736 128745 ATGAC 2
cP0000249 PotentialSSR PentaSSR 128760 128769 TGCTA 2
cH0000122 PotentialSSR HexaSSR 128774 128785 TACTTG 2
cH0000123 PotentialSSR HexaSSR 129201 129212 ATAAGA 2
cH0000124 PotentialSSR HexaSSR 129579 129590 GATAGA 2
cP0000250 PotentialSSR PentaSSR 129992 130001 TCCGC 2 rrn23
cH0000125 PotentialSSR HexaSSR 131477 131488 CGCTTC 2 rrn23
cH0000126 PotentialSSR HexaSSR 131499 131510 GCTCGC 2 rrn23
cP0000251 PotentialSSR PentaSSR 133293 133302 ATTGA 2
cP0000252 PotentialSSR PentaSSR 133613 133622 TTTGT 2
cH0000127 PotentialSSR HexaSSR 133842 133853 ATTCTT 2
cH0000128 PotentialSSR HexaSSR 134466 134477 TCCATT 2
cP0000253 PotentialSSR PentaSSR 134899 134908 ACCCC 2
cH0000129 PotentialSSR HexaSSR 135927 135938 TCAGTG 2 rrn16
cH0000130 PotentialSSR HexaSSR 136797 136808 TCATTC 2
cP0000254 PotentialSSR PentaSSR 136923 136932 TCCCT 2 trnV-GAC
cP0000255 PotentialSSR PentaSSR 137007 137016 TCTTG 2
cH0000131 PotentialSSR HexaSSR 137359 137370 TTTCCA 2
cH0000132 PotentialSSR HexaSSR 137514 137525 ATAGTA 2
cP0000256 PotentialSSR PentaSSR 137610 137619 CATTC 2
cP0000257 PotentialSSR PentaSSR 137643 137652 CATTG 2
cP0000258 PotentialSSR PentaSSR 137661 137670 TGTAT 2
cP0000259 PotentialSSR PentaSSR 137826 137835 CTAAT 2
cP0000260 PotentialSSR PentaSSR 137845 137854 TAATA 2
cH0000134 PotentialSSR HexaSSR 138182 138193 GGGATA 2
cH0000135 PotentialSSR HexaSSR 138194 138205 GAGGAA 2
cP0000261 PotentialSSR PentaSSR 138821 138830 GATTC 2
cH0000136 PotentialSSR HexaSSR 139008 139019 TATGGA 2
cP0000262 PotentialSSR PentaSSR 139856 139865 TTTCT 2
cH0000137 PotentialSSR HexaSSR 139920 139931 TAAGAA 2
cP0000263 PotentialSSR PentaSSR 140989 140998 TCTTT 2
cP0000264 PotentialSSR PentaSSR 141189 141198 AATCA 2
cP0000265 PotentialSSR PentaSSR 141405 141414 ACTTA 2
cH0000138 PotentialSSR HexaSSR 141484 141495 GACTCT 2 ndhB
cH0000139 PotentialSSR HexaSSR 141541 141552 GCTTCA 2 ndhB
cH0000140 PotentialSSR HexaSSR 142326 142337 AATGGG 2
cP0000266 PotentialSSR PentaSSR 142505 142514 TTCCA 2
cH0000141 PotentialSSR HexaSSR 142959 142970 TTGGAA 2
cP0000267 PotentialSSR PentaSSR 143193 143202 AACAA 2
cP0000268 PotentialSSR PentaSSR 143260 143269 TATTT 2
cP0000269 PotentialSSR PentaSSR 143665 143674 TTTCA 2 ycf2
cH0000142 PotentialSSR HexaSSR 144498 144509 CTTCTA 2 ycf2
cP0000270 PotentialSSR PentaSSR 145005 145014 TTTTC 2 ycf2
cP0000271 PotentialSSR PentaSSR 145992 146001 CAATC 2 ycf2
cH0000143 PotentialSSR HexaSSR 146012 146023 CTTTTT 2 ycf2
cP0000272 PotentialSSR PentaSSR 146970 146979 TTGAA 2 ycf2
cP0000273 PotentialSSR PentaSSR 147135 147144 GATCG 2 ycf2
cH0000146 PotentialSSR HexaSSR 148112 148123 TTCAAA 2 ycf2
cP0000274 PotentialSSR PentaSSR 149360 149369 CGGAT 2 ycf2
cP0000275 PotentialSSR PentaSSR 149375 149384 ATATA 2 ycf2
cP0000276 PotentialSSR PentaSSR 149938 149947 TGAAT 2 ycf2
cP0000277 PotentialSSR PentaSSR 150078 150087 ATTTC 2
cP0000278 PotentialSSR PentaSSR 150295 150304 TCATA 2
cP0000279 PotentialSSR PentaSSR 150602 150611 TATTC 2
cP0000280 PotentialSSR PentaSSR 150622 150631 AAAGA 2
cP0000281 PotentialSSR PentaSSR 150723 150732 AATCC 2 rlp2
cP0000282 PotentialSSR PentaSSR 151072 151081 ACATA 2 rpl2
cH0000147 PotentialSSR HexaSSR 151485 151496 GAAAAT 2

Acknowledgments

This research was supported by Rural Development Administration (PJ013855052019).

Author Contributions

Jongsun Park (JP) and Youngjae Chung (YC) designed this research and Yongsung Kim (YK) extract DNA of the sample. JP assembled the chloroplast genome and YK annotate it. YK and JP analyze the chloroplast genomes and all three authors wrote and edited the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1
Albuquerque, U.P., U. Patil and Á. Máthé. 2018. Medicinal and Aromatic Plants of South America, Springer, Dordrecht, Netherlands.
10.1007/978-94-024-1552-0
2
Aravindhan, V. and A. Rajendran. 2014. Diversity of invasive plant species in boluvampatti forest range, the southern Western Ghats, India. Am Eurasian J Agric Environ Sci 14(8):724-731.
3
Asaf, S., A.L. Khan, A.R. Khan, M. Waqas, S.M. Kang, M.A. Khan, S.M. Lee and I.J. Lee. 2016. Complete chloroplast genome of Nicotiana otophora and its comparison with related species. Front. Plant Sci. 7:843.
10.3389/fpls.2016.0084327379132PMC4906380
4
Balogh, L., Z. Botta-Dukát and I. Dancza. 2003. What kind of plants are invasive in Hungary: In Child, L. and J.H. Brock (eds.), Plant Invasions: Ecological threats and management solutions. Backhuys Publishers, Leiden, Netherlands. pp. 131-146.
5
Bammou, L., M. Belkhaouda, R. Salghi, O. Benali, A. Zarrouk, H. Zarrok and B. Hammouti. 2014. Corrosion inhibition of steel in sulfuric acidic solution by the Chenopodium Ambrosioides Extracts. Journal of the Association of Arab Universities for Basic and Applied Sciences 16(1):83-90.
10.1016/j.jaubas.2013.11.001
6
Bezerra, J.W.A., A.R. Costa, M.A. de Freitas, F.C. Rodrigues, M.A. de Souza, A.R.P. da Silva, A.T.L. dos Santos, K.V. Linhares, H.D.M. Coutinho and J.R. de Lima Silva. 2019. Chemical composition, antimicrobial, modulator and antioxidant activity of essential oil of Dysphania ambrosioides (L.) Mosyakin & Clemants. Comp. Immunol. Microbiol. Infect. Dis. 65:58-64.
10.1016/j.cimid.2019.04.01031300127
7
Bolger, A.M., M. Lohse and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114-2120.
10.1093/bioinformatics/btu17024695404PMC4103590
8
Brahim, M.A.S., M. Fadli, L. Hassani, B. Boulay, M. Markouk, K. Bekkouche, A. Abbad, M.A. Ali and M. Larhsini. 2015. Chenopodium ambrosioides var. ambrosioides used in Moroccan traditional medicine can enhance the antimicrobial activity of conventional antibiotics. Ind. Crop. Prod. 71:37-43.
10.1016/j.indcrop.2015.03.067
9
Brown, C.J., I.A.W. Macdonald and S. Brown. 1985. Invasive alien organisms in South West Africa/Namibia, Foundation for Research Development: CSIR.
10
Chekem, M.S.G., P.K. Lunga, J.D.D. Tamokou, J.R. Kuiate, P. Tane, G. Vilarem and M. Cerny. 2010. Antifungal properties of Chenopodium ambrosioides essential oil against Candida species. Pharmaceuticals 3(9):2900-2909.
10.3390/ph309290027713382PMC4034103
11
Chen, J., Z. Hao, H. Xu, L. Yang, G. Liu, Y. Sheng, C. Zheng, W. Zheng, T. Cheng and J. Shi. 2015. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. Front. Plant Sci. 6:447.
10.3389/fpls.2015.00447
12
Chen, Y. and Z. Yang. 2018. Characterization of the complete plastome of Dysphania botrys, a candidate plant for cancer treatment. Mitochondrial DNA B 3(2):1214-1215.
10.1080/23802359.2018.1530964
13
Cheng, J., Z. Zhao, B. Li, C. Qin, Z. Wu, D.L. Trejo-Saavedra, X. Luo, J. Cui, R.F. Rivera-Bustamante and S. Li. 2016. A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum. Sci. Rep. 6:18919.
10.1038/srep1891926739748PMC4703971
14
Chung, H.J., J.D. Jung, H.W. Park, J.H. Kim, H.W. Cha, S.R. Min, W.J. Jeong and J.R. Liu. 2006. The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. Plant Cell Rep. 25(12):1369-1379.
10.1007/s00299-006-0196-416835751
15
Dillon, S.J. and A.S. Markey. 2016. Dysphania congestiflora (Chenopodiaceae), a new species from Western Australia. Nuytsia 27:133-138.
16
Dogra, K., R. Kohli and S. Sood. 2009. An assessment and impact of three invasive species in the Shivalik hills of Himachal Pradesh, India. Int J Biodivers Conserv 1(1):004-010.
17
Dong, W., C. Xu, D. Li, X. Jin, R. Li, Q. Lu and Z. Suo. 2016. Comparative analysis of the complete chloroplast genome sequences in psammophytic Haloxylon species (Amaranthaceae). PeerJ 4:e2699.
10.7717/peerj.269927867769PMC5111891
18
Foxcroft, L.C., D.M. Richardson and J.R. Wilson. 2008. Ornamental plants as invasive aliens: problems and solutions in Kruger National Park, South Africa. Environ Manage 41(1):32-51.
10.1007/s00267-007-9027-917943344
19
Fuentes-Bazan, S., G. Mansion and T. Borsch. 2012a. Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). Mol. Phylogenet. Evol. 62(1):359-374.
10.1016/j.ympev.2011.10.00622051350
20
Fuentes-Bazan, S., G. Mansion and T. Borsch. 2012b. A novel phylogeny-based generic classification for Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae). Willdenowia 42(1):5-25.
10.3372/wi.42.42101
21
Goia, I., C.M. Ciocanea and A.A. Gavrilidis. 2014. Geographic origins of invasive alien species in "Iron Gates" Natural Park (Banat, Romania). Transylv. Rev. Syst. Ecol. Res. 16(3): 115-130.
10.1515/trser-2015-0036
22
Han, B.W., H.R. Na and J.O. Hyun. 2018. Floristic study of Jindo island. Korean J. Plant Res. 31(2):162-194 (in Korean).
23
Hegazy, A., S. Mussa and H. Farrag. 2008. Invasive plant communities in the Nile Delta coast. Global J. Environ. Res. 2(1):53-61.
24
Hong, S.Y., K.S. Cheon, K.O. Yoo, H.O. Lee, K.S. Cho, J.T. Suh, S.J. Kim, J.H. Nam, H.B. Sohn and Y.H. Kim. 2017. Complete chloroplast genome sequences and comparative analysis of Chenopodium quinoa and C. album. Front. Plant Sci. 8:1696.
10.3389/fpls.2017.0169629056940PMC5635682
25
Ibironke, G. and K. Ajiboye. 2007. Studies on the anti- inflammatory and analgesic properties of Chenopodium ambrosioides leaf extract in rats. Int. J. Pharmacol. 3(1):111-115.
10.3923/ijp.2007.111.115
26
Jardim, C.M., G.N. Jham, O.D. Dhingra and M.M. Freire. 2008. Composition and antifungal activity of the essential oil of the Brazilian Chenopodium ambrosioides L. J. Chem. Ecol. 34(9):1213-1218.
10.1007/s10886-008-9526-z18679750
27
Jeon, J.H. and S.C. Kim. 2019. Comparative Analysis of the Complete Chloroplast Genome Sequences of Three Closely Related East-Asian Wild Roses (Rosa sect. Synstylae; Rosaceae). Genes 10(1):23.
10.3390/genes1001002330609873PMC6356658
28
Kadereit, G., T. Borsch, K. Weising and H. Freitag. 2003. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int. J. Plant Sci. 164(6): 959-986.
10.1086/378649
29
Kadereit, G., E.V. Mavrodiev, E.H. Zacharias and A.P. Sukhorukov. 2010. Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. Am. J. Bot. 97(10):1664-1687.
10.3732/ajb.100016921616801
30
Katoh, K. and D.M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30(4):772-780.
10.1093/molbev/mst01023329690PMC3603318
31
Kim, S.H., J. Yang, J. Park, T. Yamada, M. Maki and S.C. Kim. 2019. Comparison of Whole Plastome Sequences between Thermogenic Skunk Cabbage Symplocarpus renifolius and Nonthermogenic S. nipponicus (Orontioideae; Araceae) in East Asia. Int. J. Mol. Sci. 20(19):4678.
10.3390/ijms2019467831547213PMC6801674
32
Kim, Y., Y. Chung and J. Park. 2019. The complete chloroplast genome sequence of Dysphania pumilio (R. Br.) Mosyakin & Clemants (Amaranthaceae). Mitochondrial DNA B 4(1):403-404.
10.1080/23802359.2018.1547156
33
Kiuchi, F., Y. Itano, N. Uchiyama, G. Honda, A. Tsubouchi, J. Nakajima-Shimada and T. Aoki. 2002. Monoterpene hydroperoxides with trypanocidal activity from Chenopodium ambrosioides. J. Nat. Prod. 65(4):509-512.
10.1021/np010445g11975490
34
Kumar, R., A.K. Mishra, N. Dubey and Y. Tripathi. 2007. Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int. J. Food Microbiol. 115(2):159-164.
10.1016/j.ijfoodmicro.2006.10.01717174000
35
Lee, Y.M., S.H. Park, S.Y. Jung, S.H. Oh and J.C. Yang. 2011. Study on the current status of naturalized plants in South Korea. Korean J. Pl. Taxon 41(1):87-101.
10.11110/kjpt.2011.41.1.087
36
Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv: 1303.3997.
37
Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis and R. Durbin. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078-2079.
10.1093/bioinformatics/btp35219505943PMC2723002
38
Li, W., Y. Liu, Y. Yang, X. Xie, Y. Lu, Z. Yang, X. Jin, W. Dong and Z. Suo. 2018. Interspecific chloroplast genome sequence diversity and genomic resources in Diospyros. BMC plant Biol. 18(1):210.
10.1186/s12870-018-1421-330257644PMC6158880
39
Li, W., C. Zhang, X. Guo, Q. Liu and K. Wang. 2019. Complete chloroplast genome of Camellia japonica genome structures, comparative and phylogenetic analysis. PLOS ONE 14(5):e0216645.
10.1371/journal.pone.021664531071159PMC6508735
40
Li, Z.Z., J. Saina, A. Gichira, C. Kyalo, Q.F. Wang and J.M. Chen. 2018. Comparative genomics of the balsaminaceae sister genera Hydrocera triflora and Impatiens pinfanensis. Int. J. Mol. Sci. 19(1):319.
10.3390/ijms1901031929360746PMC5796262
41
Liu, J., M. Dong, S.L. Miao, Z.Y. Li, M.H. Song and R.Q. Wang. 2006. Invasive alien plants in China: role of clonality and geographical origin. Biol. Invasions 8(7):1461-1470.
10.1007/s10530-005-5838-x
42
Lohse, M., O. Drechsel and R. Bock. 2007. Organellar GenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52(5-6):267-274.
10.1007/s00294-007-0161-y17957369
43
Lowe, T.M. and S.R. Eddy. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25(5):955-964.
10.1093/nar/25.5.9559023104PMC146525
44
Mardis, E.R. 2008. The impact of next-generation sequencing technology on genetics. Trends Genet. 24(3):133-141.
10.1016/j.tig.2007.12.00718262675PMC2680276
45
Maslo, S. 2016. Preliminary list of invasive alien plant species (IAS) in Bosnia and Herzegovina. Herbologia 16(1): 1-14.
10.5644/Herb.16.1.01
46
Metzker, M.L. 2010. Sequencing technologies-the next generation. Nat. Rev. Genet. 11(1):31.
10.1038/nrg262619997069
47
Mito, T. and T. Uesugi. 2004. Invasive alien species in Japan: the status quo and the new regulation for prevention of their adverse effects. Global Environmental Research 8(2): 171-193.
48
Monzote, L., A.M. Montalvo, S. Almanonni, R. Scull, M. Miranda and J. Abreu. 2006. Activity of the essential oil from Chenopodium ambrosioides grown in Cuba against Leishmania amazonensis. Chemotherapy 52(3):130-136.
10.1159/00009285816636536
49
Monzote, L., M. García, J. Pastor, L. Gil, R. Scull, L. Maes, P. Cos and L. Gille. 2014. Essential oil from Chenopodium ambrosioides and main components: activity against Leishmania, their mitochondria and other microorganisms. Exp. Parasitol. 136:20-26.
10.1016/j.exppara.2013.10.00724184772
50
Mosyakin, S.L. and S.E. Clemants. 2002. New nomenclatural combinations in Dysphania R. Br.(Chenopodiaceae): taxa occurring in North America. Ukr. Bot. Zhur. 59(4):380-385.
51
Mosyakin, S.L. and S.E. Clemants. 2008. Further transfers of glandular- pubescent species from Chenopodium subg. Ambrosia to Dysphania (Chenopodiaceae). J Bot Res Inst Tex 2(1): 425-431.
52
Nei, M. and W.H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. PNASU. 76(10):5269-5273.
10.1073/pnas.76.10.5269291943PMC413122
53
Nguyen, L.T., H.A. Schmidt, A. von Haeseler and B.Q. Minh. 2014. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268-274.
10.1093/molbev/msu30025371430PMC4271533
54
Pace, L. and F. Tammaro. 2001. The main invasive alien plants in the protected areas in central Italy (Abruzzo): In Visconti, G., M. Beniston, E.D. Iannorelli, D. Barba (eds.), Global Change and Protected Areas, Springer, Dordrecht, Netherlands. pp. 495-504.
10.1007/0-306-48051-4_46
55
Pandey, A.K., U.T. Palni and N. Tripathi. 2014. Repellent activity of some essential oils against two stored product beetles Callosobruchus chinensis L. and C. maculatus F. (Coleoptera: Bruchidae) with reference to Chenopodium ambrosioides L. oil for the safety of pigeon pea seeds. J. Food Sci. Technol. 51(12):4066-4071.
10.1007/s13197-012-0896-425477682PMC4252434
56
Park, J. and Y. Kim. 2019. The second complete chloroplast genome of Dysphania pumilio (R. Br.) mosyakin & clemants (Amranthaceae): intraspecies variation of invasive weeds. Mitochondrial DNA Part B 4(1):1428-1429.
10.1080/23802359.2019.1598807
57
Pavela, R., F. Maggi, G. Lupidi, H. Mbuntcha, V. Woguem, H.M. Womeni, L. Barboni, L.A. Tapondjou and G. Benelli. 2018. Clausena anisata and Dysphania ambrosioides essential oils: from ethno-medicine to modern uses as effective insecticides. Environ. Sci. Pollut. R. 25(11): 10493-10503.
10.1007/s11356-017-0267-928965298
58
Perth, U. 2011. Dysphania sect. Botryoides (Amaranthaceae s. lat.) in Asia. Willdenowia 43(1):65-80.
10.3372/wi.43.43107
59
Prasad, C.S., R. Shukla, A. Kumar and N. Dubey. 2010. In vitro and in vivo antifungal activity of essential oils of Cymbopogon martini and Chenopodium ambrosioides and their synergism against dermatophytes. Mycoses 53(2):123- 129.
10.1111/j.1439-0507.2008.01676.x19298359
60
Rastogi, J., D. Rawat and S. Chandra. 2015. Diversity of invasive alien species in Pantnagar flora. Tropical Plant Research 2(3):282-287.
61
Reyes-Becerril, M., C. Angulo, V. Sanchez, J. Vázquez- Martínez and M.G. López. 2019. Antioxidant, intestinal immune status and anti-inflammatory potential of Chenopodium ambrosioides L. in fish: In vitro and in vivo studies. Fish Shellfish Immunol. 86:420-428.
10.1016/j.fsi.2018.11.05930502468
62
Rossi-Bergamann, B., S.S. Costa and V.L.G.D. Moraes. 1997. Brazilian medicinal plants: a rich source of immunomodulatory substances. Ciênc. Cult. 49(5/6):395-401.
63
Sekar, K.C. 2012. Invasive alien plants of Indian Himalayan region-diversity and implication. Am J Plant Sci 3(02):177.
10.4236/ajps.2012.32021
64
Shukla, N., H. Kuntal, A. Shanker and S.N. Sharma. 2018. Mining and analysis of simple sequence repeats in the chloroplast genomes of genus Vigna. Biotechnology Research and Innovation 2(1):9-18.
10.1016/j.biori.2018.08.001
65
Song, Z., X. Xu, B. Wang, J. Chen and B.R. Lu. 2003. Genetic diversity in the northernmost Oryza rufipogon populations estimated by SSR markers. Theor. Appl. Genet. 107(8): 1492-1499.
10.1007/s00122-003-1380-312920513
66
Stohlgren, T.J., L.L. Loope and L.J. Makarick. 2013. Invasive plants in the United States national parks. In Foxcroft, L.C., P. Pyšek, D.M. Richardson, and P. Genovesi (eds.), Plant Invasions in Protected Areas: Patterns, problems and challenges, Springer, Dordrecht, Netherlands. pp. 267-283.
10.1007/978-94-007-7750-7_13
67
Sukhorukov, A.P. 2012. Taxonomic notes on Dysphania and Atriplex (Chenopodiaceae). Willdenowia 42(2):169-181.
10.3372/wi.42.42202
68
Sukhorukov, A.P., M.V. Nilova, A.A. Krinitsina, M.A. Zaika, A.S. Erst and K.A. Shepherd. 2018. Molecular phylogenetic data and seed coat anatomy resolve the generic position of some critical Chenopodioideae (Chenopodiaceae-Amaranthaceae) with reduced perianth segments. PhytoKeys 109: 103-128.
10.3897/phytokeys.109.2895630386165PMC6209657
69
Sukhorukov, A.P., M. Zhang and M. Kushunina. 2015. A new species of Dysphania (Chenopodioideae, Chenopodiaceae) from South-West Tibet and East Himalaya. Phytotaxa 203(2):138-146.
10.11646/phytotaxa.203.2.3
70
Thomson, A.M., O.M. Vargas and C.W. Dick. 2017. Comparative analysis of 24 chloroplast genomes yields highly informative genetic markers for the Brazil nut family (Lecythidaceae). bioRxiv:192112.
71
Verloove, F. 2013. New xenophytes from Gran Canaria (Canary Islands, Spain), with emphasis on naturalized and (potentially) invasive species. Collect Bot 32:59-82.
10.3989/collectbot.2013.v32.006
72
Verloove, F. and J. Lambinon. 2006. The non-native vascular flora of Belgium: a new nothospecies and three new combinations. Syst. Geogr. Plants 217-220.
73
Wang, J., D. Ma and L. Tang. 2009. Allelopathy of volatile oil from Chenopodium ambrosioides L. on receptors. Southwest China Journal of Agricultural Sciences 22(3): 777-780.
10.1016/S1671-2927(08)60278-3
74
Wang, M.L., N.A. Barkley and T.M. Jenkins. 2009. Microsatellite markers in plants and insects. Part I: Applications of biotechnology. Genes, Genomes and Genomics 3(1):54-67.
75
Wang, W., S. Chen and X. Zhang. 2018. Whole-genome comparison reveals divergent IR borders and mutation hotspots in chloroplast genomes of herbaceous bamboos (Bambusoideae: Olyreae). Molecules 23(7):1537.
10.3390/molecules2307153729949900PMC6099781
76
Weber, E. and D. Gut. 2004. Assessing the risk of potentially invasive plant species in central Europe. J. Nat. Conserv. 12(3):171-179.
10.1016/j.jnc.2004.04.002
77
Wei, H., J. Liu, B. Li, Z. Zhan, Y. Chen, H. Tian, S. Lin and X. Gu. 2015. The toxicity and physiological effect of essential oil from Chenopodium ambrosioides against the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Crop. Prot. 76:68-74.
10.1016/j.cropro.2015.06.013
78
Wilson, H.D., S.C. Barber and T. Walters. 1983. Loss of duplicate gene expression in tetraploid Chenopodium. Biochem. Syst. Ecol. 11(1):7-13.
10.1016/0305-1978(83)90022-4
79
Würschum, T., S.M. Langer, C.F.H. Longin, V. Korzun, E. Akhunov, E. Ebmeyer, R. Schachschneider, J. Schacht, E. Kazman and J.C. Reif. 2013. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor. Appl. Genet. 126(6):1477-1486.
10.1007/s00122-013-2065-123429904
80
Xie, D.F., Y. Yu, Y.Q. Deng, J. Li, H.Y. Liu, S.D. Zhou and X.J. He. 2018. Comparative analysis of the chloroplast genomes of the Chinese endemic genus Urophysa and their contribution to chloroplast phylogeny and adaptive evolution. Int. J. Mol. Sci. 19(7):1847.
10.3390/ijms1907184729932433PMC6073864
81
Xu, H., S. Qiang, P. Genovesi, H. Ding, J. Wu, L. Meng, Z. Han, J. Miao, B. Hu and J. Guo. 2012. An inventory of invasive alien species in China. NeoBiota 15:1-26.
10.3897/neobiota.15.3575
82
Yang, Y., T. Zhou, D. Duan, J. Yang, L. Feng and G. Zhao. 2016. Comparative analysis of the complete chloroplast genomes of five Quercus species. Front. Plant Sci. 7:959.
10.3389/fpls.2016.00959
83
Zerbino, D.R. and E. Birney. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18(5):821-829.
10.1101/gr.074492.10718349386PMC2336801
84
Zhao, Q.Y., Y. Wang, Y.M. Kong, D. Luo, X. Li and P. Hao. 2011. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics 12(14):S2.
10.1186/1471-2105-12-S14-S222373417PMC3287467
85
Zhu, G., S.L. Mosyakin, and S.E. Clemants. 2003. Chenopodiaceae: In Zhengyi, W. and P.H. Raven (eds.), Flora of China. Vol. 5 (Ulmaceae through Basellaceae). Science Press, Beijing, China and Missouri Botanical Garden Press, St. Louis, USA. pp. 351-414.
페이지 상단으로 이동하기